Subalgebra modular, distributive and boolean varieties of semigroups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Subalgebra Intersection Property for Congruence Distributive Varieties

We prove that if a finite algebra A generates a congruence distributive variety then the subalgebras of the powers of A satisfy a certain kind of intersection property that fails for finite idempotent algebras that locally exhibit affine or unary behaviour. We demonstrate a connection between this property and the constraint satisfaction problem.

متن کامل

Interlaced, modular, distributive and boolean bilattices

We will discuss the concepts of interlaced, modular, distributive , Boolean (DeMorgan) and Ginsberg bilattices with their characterizations by hyperidentities and superproducts.

متن کامل

Finitely Based Modular Congruence Varieties Are Distributive

R. Dedekind introduced the modular law, a lattice equation true in most of the lattices associated with classical algebraic systems, see [4]. Although this law is one of the most important tools for working with these lattices, it does not fully describe the equational properties of these lattices. This was made clear in [8] where B. Jónsson and the author showed that if any modular congruence ...

متن کامل

compactifications and representations of transformation semigroups

this thesis deals essentially (but not from all aspects) with the extension of the notion of semigroup compactification and the construction of a general theory of semitopological nonaffine (affine) transformation semigroup compactifications. it determines those compactification which are universal with respect to some algebric or topological properties. as an application of the theory, it is i...

15 صفحه اول

Modular and Distributive Semilattices

A modular semilattice is a semilattice S in which w > a A ft implies that there exist i,jeS such that x > a. y > b and x A y = x A w. This is equivalent to modularity in a lattice and in the semilattice of ideals of the semilattice, and the condition implies the Kurosh-Ore replacement property for irreducible elements in a semilattice. The main results provide extensions of the classical charac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Czechoslovak Mathematical Journal

سال: 1992

ISSN: 0011-4642,1572-9141

DOI: 10.21136/cmj.1992.128374